1 1 **1.** (a) (i) - (ii) No rotation / restricted rotation around double bond(1) - (b) (i) $\begin{array}{cccc} H & C_2H_5 & H & CH_3 \\ C = C & & C & CH_3 \end{array}$ - (ii) One end of C=C bond has 2 identical atoms / groups attached (1) Or if cyclobutane – no movement / no C=C (1) [5] - 2. (a) (i) e.g. $CH_3CHBrCH_2CH_3 + KOH \rightarrow CH_2=CHCH_2CH_3 + KBr + H_2O$ Or $CH_3CHBrCH_2CH_3 + KOH \rightarrow CH_3CH=CHCH_3 + KBr + H_2O$ (1) $allow\ ionic\ equation\ with\ OH^-\ and\ Br^-$ 1 - (ii) Elimination (1) - (b) (i) brown / red-brown / orange / red-orange / yellow to colourless / fades / decolourises / gets paler (1) 1 - (ii) H H CH₃-C-C-C-CH₃ Br Br 2,3-dibromobutane (1) accept 3-bromobutan-2-ol if correct structure drawn for hydroxy product 2 2 3 1 [9] (c) $$CH_3$$ $C = C$ H CH_3 CH_3 CH_3 CH_3 CH_3 $C = C$ H CH_3 - (ii) Restricted (or 'no') rotation about double bond / 2 different groups at each end of double bond (1) geometrical / cis-trans (1) - 3. (a) Group of compounds with the same general formula (1) that differ by -CH₂- (1) Same or similar **chemical** properties / same functional group (1) - (b) (i) CH₃ H -C C | H H At least one repeat unit (1) evidence of extension of chain (1) consequential on correct repeat unit - (ii) CH₂ (1) empirical formula of propene/ the repeat unit (1) since polymer made by addition reaction / no loss of small molecules (1) - (c) Different chain lengths / areas of crystalline and amorphous structure (1) - (d) (i) C-F bond strong / high bond enthalpy / bond not easily broken / steric hindrance by fluorine around carbon (1) - (ii) Non–stick coatings e.g. in saucepans, in pipes, on skis, stain–proofing of fabrics, waterproof clothing. (1) Only single / sigma bonds in ethane (1) Ethene also has π bond (1) π bond weaker (and breaks) / electrons in π bond 3 more accessible (1) [14] 4. It is a mixture / not a single compound 1 (a) (b) 2,4-dimethylpentane 1 (i) (ii) C_7H_{16} 1 (iii) More volatile / lower boiling point / vaporises more readily / branched so doesn't knock / higher octane number 1 Heat / high temperature / ≥ 200 °C (1) Silica / alumina (catalyst) /zeolites (1) 2 Diagram should show: (v) Test tube containing paraffin absorbed on suitable absorbent – (1) absorbent can be just shown in the diagram Aluminium oxide catalyst (1) Heat catalyst (1) Recognition of collection of gas over water /gas syringe (1) 4 Penalties −1 for poor diagram (c) (i) $(CH_3)_2C = CH_2$ ACCEPT (CH₃)₂CCH₂ 1 Elimination 1 (ii) Potassium hydroxide / KOH / NAQH (1) Ethanolic / alcoholic solution + heat / reflux (1) 2 [14] 5. $C_2H_6 + Br_2 \rightarrow C_2H_5Br + HBr$ (1) (a) (i) $C_2H_4 + Br_2 \rightarrow CH_2BrCH_2Br ALLOW C_2H_4Br_2$ (1) 2 IGNORE STATE SYMBOLS (ii) (Free) radical / homolytic (1) substitution (1) Electrophilic (1) addition (1) 4 (b) (i) (ii) Water pipes window or door frames clothing bottles Any one coating on electrical cables flooring **NOT** plastic / PVC / carrier bags (iii) Persists in the environment / persisting as litter OR non-biodegradable / not broken down by bacteria (1) because of strong C-Cl bond (1) ORcombustion / burning (1) produces toxic gases /acidic gases/HCI (1) **NOT** chlorine [10] 1 1 2 2 - 6. A species with a lone pair / pair of electrons (1) (a) NOT "negative ion" alone or as an alternative - which it uses / donates to form a (dative) covalent bond (1) - (b) (i) • Ammonia / NH₃ (in ethanol) (1) - heat (1) NOT heat under reflux UNLESS in a sealed tube If a temperature is quoted it must be greater than 100°C - in sealed tube / under pressure / concentrated (1) If a pressure is quoted it must be greater than 1 atm Conditions are dependent on correct reagent. If ammonia and an additional reagent **max (1)** for two correct conditions. 3 - (ii) Carbon-bromine bond stronger / higher bond enthalpy than carbon iodine / Ea for C-Br is higher than C-I - **IGNORE** any extra explanations involving the alkyl groups - (c) Identify bonds broken and made (1) e.g. Energy in +464 or +3340 **AND** Energy out (-) 656 or (-) 3532 (1) Energy needed to break bonds – energy released to make bonds = 36(1) e.g. $$C-I + 464 - 656 = +36$$ or C-I + $$3340 - 3532 = +36$$ (1) Correct evaluation dependent on use of 36 (1) i.e. $$C-I = 228 \text{ kJ mol}^{-1}$$ (1) Correct answer with some correct working (3) If final answer is negative max (2) If 36 is on the wrong side, then 156 max 2 (-156 (1)) If miss out 36, then $\pm 192 \text{ max } 1$ (d) H - C - C O - H ALLOW OH [10] - 7. (a) (i) 1,2-dichloroethane - (ii) $CH_2 = CHC1 / CH_2CHC1$ - (iii) e.g. dissolve / bubble HCl in water / absorb in an alkali / condense the HCl(g) - (b) (i) Species having unpaired electron - (ii) Action of UV radiation/sunlight / named initiator / photoflood 1 1 1 1 [11] 1 - (c) (i) Water / OH⁻ 1 (ii) Unshared / lone pair of electrons on a legitimate nucleophile based on (c)(i) (1) (c)(i) "nucleophile" attacks / forms bond with C of C Cl (1) 2 (iii) Chloride ion / Cl⁻ 1 - (iv) Add silver nitrate solution (1) white ppt (1) 2 - 8. (a) (i) a particle / species /group with an unpaired electron /OWTTE 1 (ii) ++++ 1 homolytic (iii) - (b) B and C 1 - (c) (i) $C1_2 + CH_4 \rightarrow CH_3Cl + HCl$ - (ii) $+242 + 4 + -339 = -93 \text{ kJ mol}^{-1}$ (A + B + F) OR $+4 - 97 = -93 \text{ kJ mol}^{-1}$ (B + C) Method (1) answer with units (1) - (d) (i) -242 kJ mol⁻¹ 1 (ii) Exothermic because a bond has been formed. 1 - (e) Less endothermic (1) the bond is weaker (1) [11] - 9. (a) (i) $CH_4 + C1_2 \rightarrow CH_3Cl + HCl$ (1) 1 (ii) UV (radiation) / Sunlight (1) Not light 1 (b) (i) - (ii) restricted rotation around double bond (1) Allow no rotation at room temperature two different groups on each double bonded carbon (1) - (iii) 2,3-dichlorobutane (1) - 10. (a) (i) $C_2H_6(g)/(I) \rightarrow C_2H_4(g) + H_2(g)$ If a state symbol is missing (0) If (aq) (0) 1 - (ii) At high pressure reaction goes in direction to reduce pressure/to oppose change by Le Chatelier's principle (1) towards side with fewer molecules/moles (1) - (b) Shapes of orbitals between and above carbon If p orbitals drawn msut show overlapping Shapes (1) ACCEPT crescents for π bonds NOT lines for σ bond Labels (1) (c) Addition of bromine water/solution (1) from yellow/brown/orange to colourless (1) OR acidified potassium manganate(VII) (1) from pink/purple to colourless (1) (d) Addition (1) Electrophile *OR* appropriate *explanation* (1) 2 2 2 2 2 [7] ## **11.** (a) H_2 / hydrogen *NOT* H **(1)** Ni / nickel OR platinum / Pt / palladium / Pd (1) (Ni) $$140 - 180 \, ^{\circ} \, \text{C} \, / \, \text{heat} \, (1)$$ 3 OR (Pt / Pd) room temperature If no reagent but other parts correct (1) Incorrect reagent (0) (b) (i) 1 (ii) electrophile / electrophilic IGNORE any reference to addition 1 (c) potassium manganate(VII) / potassium permanganate / MnO₄ / manganate(VII) ions *IGNORE* acid or alkali *ACCEPT name or formula* 1 (d) Correct structure (1) – only one repeat until identified Continuation (1) IGNORE ()_n 2 12. (a) (i) (Free) radical ACCEPT homolytic radical NOT radical ion 1 [8] 2 (ii) $CH_3CH_3 + Br_2 \rightarrow CH_3CH_2Br + HBr$ OR $C_2H_6 + Br_2 \rightarrow C_2H_5Br + HBr$ ACCEPT multiple substitution only if the equation balances Can be full structural formula If H_2 is one product then (0) (b) (i) $CH_2 = CH_2 + Br_2 \rightarrow BrCH_2CH_2Br / CH_2BrCH_2Br / CH_2 - CH_2$ | | Br Br Ethene shown with double bond $+ Br_2$ (1) product (1) 2 - (ii) 1,2 (-) dibromoethane only mark independently of (i) IGNORE punctuation 1 - QWC (c) Ethene has a π / double bond (1) Ethane has σ only / single only / no π / no double bond (1) π (in ethene) weaker than C–H (in ethane) / high electron density in C=C relative to C–H bond (1) [8] - 13. (a) (i) H_3C C = C H C = C H C = C CH CH Can show C in straight line if H's clearly cis or trans. If H is missing once but bond is shown, no penalty. If all H's missing then (1) only awarded for both structures CH₃ ALLOW C- (ii) (Both have) no/restricted rotation about C=C (rotation would require π bond to break) (1) but but-1-ene has two identical groups on a doubly bonded carbon atom (1) but-2-ene does not (1) OR other way round 3 **ALLOW** $$\begin{array}{c} H \\ C = C \\ \begin{array}{c|c} H \\ C \\ \end{array} \\ \begin{array}{c|c} H \\ H \\ \end{array} \\ \begin{array}{c|c} H \\ H \\ \end{array}$$ Do not need to show all bonds eg can be -CH₃, -C₂H₅ (b) (i) Skeleton (1) Indication of continuation conditional on a two carbon saturated chain in the skeleton. (1) (ii) Unreactive OR non-biodegradable (1) So occupies / fills site OR remains in the site OR causes visual pollution (1) 2^{nd} mark consequential on I^{st} NOT "Do not decompose/decay" for 1st mark but allow 2nd mark 2 **14.** (a) Alkene [10] (b) $CH_2=CHCH_2CH_3 / CH_3CH=CHCH_3 / CH_2 = C(CH_3)_2 / CH_2=C(CH_3)CH_3$ double bond need not be shown ACCEPT displayed formula Mark independently of a Watch for incorrect numbers of H in the middle of the chain [2] 15. (i) H H H H | | | | | H-C-C=C | H H H 1 1 1 (ii) H H H ו °× •× H C C C C •× H H ALLOW all dots or crosses ALLOW TE for a butene/pentene in (a)(i) IGNORE circle [2] 16. (CH₃)₂C=CH₂ ALLOW displayed formula (1) ALLOW C(CH₃)₂=CH₂ CH₃C(CH₃)=CH₂ CH₃CCH₃=CH₂ CCH₃CCH₃=CH₂ CCH₃CH₃=CH₂ CH₃CCH₃CH₂ double bond need not be shown, but if single bond displayed (0) (2-)methylpropene 2 - methylprop - 1 - ene 2 - methylprop - 2 - ene Mark independently No transferred error allowed [2] 1 17. (a) (i) 2(-)chloropropane MUST be fully displayed (1) (ii) $IGNORE \text{ rest of molecule } \begin{cases} (1) \\ -C - C1 \end{cases}$ Mark independently Must attack the carbon ALLOW attack by oxygen or negative charge or lone pair 2 ACCEPT OH NOT OH NOT C⁺ - (b) (i) Elimination NOT in conjunction with additional incorrect information eg "nucleophile" - Any additional incorrect reagent (0) NOT alkali on its own for 1st mark Alcoholic solution / ethanolic solution and heat / warm / reflux (1) 2nd mark is dependent on mention of correct reagent or "alkali" "aqueous" negates 2nd mark eg KOH(aq) + heat (1) ie reagent mark NaOH(alc) + heat (2) - (c) (i) Hydrogen/H bonding 1 Sodium hydroxide / NaOH/potassium hydroxide / KOH (1) - CH₃ CH₃ CH₃ CH₃ C O H - O CHCH₃ H H-bond and rest of molecule (1) angle must be between 3 atoms for a correct H bond (1) ALLOW HOH 106-108° 2 - (d) (i) (ii) (ii) Brackets optional but continuation must be shown 4 carbon chain with 6Cs overall in structure (1) methyl groups can be on C_1 and C_3 , C_1 and C_4 , C_2 and C_4 , C_2 and C_3 (1) $$\begin{bmatrix} H & CH_3 \\ I & I \\ C & C \\ I & I \\ H & H \end{bmatrix}_{n}$$ $$1 \text{ max}$$ (ii) (big molecule) so large number of electrons (1) Hence large/strong van der Waals' forces (to be overcome to change state)(1) [14] IGNORE punctuation ALLOW 1 max if correct answer is pre-fixed by cis / trans 2 2 - (ii) From orange/yellow/brown to colourless (1) NOT red NOT clear 1 - (iii) addition (1) electrophilic (1) in either order in either order 2 Methyl group need not be displayed 1 - (b) (i) Van der Waals' (forces) ACCEPT Van der Walls NOT vdw - (ii) Q because (unbranched) so greater area of **contact** / **closer packing** (between molecules) (1) hence greater Van der Waals/vdw forces (1) 2^{nd} mark dependent on I^{st} Incorrect isomer chosen (0) Fully correct reverse argument (2) [9] 2 1 **19.** (a) (i) Accept CH3 in branches But do not allow bond directly to H (ii) 1 Reject bond pointing directly to H i.e. in OH i.e. Reject Hs missing from carbons i.e. (b) Isomer 1 $$C = C$$ $$C_2 H_5$$ $$H$$ $$(1)$$ Isomer 2 $$C_2H_5$$ $C=C$ H (1) Accept 90° bond angles e.g $C=C$ C If incorrect alkene eg but-2-ene, allow (1) for both cis and trans isomers [4] 2 2 20. (a) (i) $$(C_2H_6 + Br_2) \rightarrow C_2H_5Br + HBr$$ OR multiple substitution e.g. $C_2H_6 + 2Br_2 \rightarrow C_2H_4Br_2 / CH_3CHBr_2/CH_2BrCH_2Br + 2HBr$ $C_2H_6 + 3Br_2 \rightarrow C_3H_3Br_3 + 3HBr$ etc 1 Accept CH_3CH_2Br or full structural formula Reject $C_2H_6 + 3Br_2 \rightarrow 2C + 6HBr$ (ii) $$(C_2H_4 + Br_2) \rightarrow CH_2BrCH_2Br$$ 1 Reject $C_2H_4Br_2$ (b) (i) ethane C– H bond <u>and</u> ethene C=C bond (1) ALLOW carbon–carbon if double in type of bond ethane type: σ/sigma <u>and</u> ethene type: π/pi (1) OR mark horizontally Reject σ and π for ethene | | | (ii) | π /pi bond is weaker (than the σ /sigma bond) | 1 | | |-----|-----|-------|---|---|-----| | | | | Accept π/pi bond requires less energy to break OR π/pi bond has lower bond enthalpy | | | | | | | Reject π breaks more easily | | | | | | | Reject π bond is weak | | | | | | | OR | | | | | | | π /pi bond has higher electron density (than the σ /sigma bond) | | | | | | | Accept π/pi bond has more accessible electron density | | [5] | | 21. | (a) | (i) | 2,2,4-trimethylpentane | | | | | | | Ignore punctuation (Commas and hyphens may be interchanged) | 1 | | | | | | Accept 2,4,4 - trimethylpentane | | | | | | | Reject pentan for pentane 2-dimethyl-4 methylpentane 2,2-dimethyl-4-methyl pentane 2-methyl-4,4-dimethyl pentane 2,4-trimethylpentane | | | | | | (ii) | C_4H_9 | 1 | | | | | | Accept $C_8H_{I8} \rightarrow C_4H_9$ | | | | | | (iii) | C_2H_4 Reject CH_2CH_2 | 1 | | | | | (iv) | Positive because energy is required to break (C–C) bonds (and not completely replaced (from new bonds made)) OR Positive because cracking requires (continuous) supply of heat so must be endothermic | 1 | | | | | | Accept two C-C bonds are broken and one C=C made | | | | | | | Reject positive because it only occurs at high temperature | | | | | (v) | $C_8H_{18} + 17/2 O_2 \rightarrow 8CO + 9H_2O$ | | | |-----|-------|--|---|------| | | | OR $2C_8H_{18} + 17 O_2 \rightarrow 16CO + 18H_2O$ | | | | | | OR $C_8H_{18} + 9/2 O_2 \rightarrow 8C + 9H_2O$ (or doubled) | | | | | | Oxygen on left and correct formulae of products (1) balancing (1) Second mark depends on first and a sensible hydrocarbon formula must be used. | 2 | | | | | Accept balanced equations including CO and/or C with CO ₂ 17/2 can be written 8.5 or $8\frac{1}{2}$ Allow balanced equations based on C_8H_{18} with a smaller alkane in the products for 1 mark eg $C_8H_{18} + O_2 \rightarrow CO + C_7H_{16} + H_2O$ (1) | | | | (b) | (i) | Increase in pressure: No effect as number of moles/molecules (of gas) doesn't change during reaction (1) | | | | | | Increase in temperature: more NO as forward reaction endothermic OWTTE (1) | | | | | | One mark for two correct predictions with incorrect explanations | 2 | | | | | Reject increase in temperature moves equilibrium to the right | | | | | (ii) | Rate increases as converter gets hotter (as reaction is exothermic) | 1 | | | | (iii) | N ₂ / nitrogen is (major) part of air/ N ₂ unreactive/ not poisonous/ not a greenhouse gas / not acidic Accept correct harmful properties of other 3 gases | 1 | | | | | | | | | | (iv) | Line from level of reactants to maximum labelled E _A (1) | | | | | | Curve of similar shape above existing curve, starting and finishing at same levels, with maximum above original maximum (1) | 2 | [12] | | (a) | (i) | A and/or propene | 1 | | | | | Accept prop-1-ene | | | | | | Reject A and any other letter | | | 22. | | (ii) | B C and D (any order 3 correct for 2 marks 2 correct for 1 mark 1 letter, correct or inc 2 letters both correct 2 letters 1 correct 1 w 3 letters, all correct 3 letters, 2 correct 1 v 3 letters, 1 correct 2 v 4 letters, 3 correct 1 v 4 letters, 2 correct 2 v 5 letters | orrect rong vrong vrong vrong vrong | O eg 1 O 2 1 O 1 O O | B BC BE BCD BCE ABE BCDE ABDE ABCDE | 2 | |-----|------|--|-------------------------------------|----------------------|-------------------------------------|---| | (b) | (i) | | 2 (–) brom
2, bromop | | = | 1 | | | | Reject bromopi
Reject bromo-2
Reject 2-bromo | ?-propane | | | | | | (ii) | poly(propene) or poly | propene | | | 1 | | | | Accept polly(pr
Accept polypro | | | | | | | | Reject poly por
Reject polyproj | | | | | | (c) | (i) | potassium/sodium hy | droxide (1 |) | | | | | | (concentrated) ethanol(ic)/alcoholic | AND heat | /reflux | (| 2 | | | | Accept KOH/N | аОН | | | | | | | Reject alkali or | its own | | | | | | | Reject any men | tion of wa | ter/aq | ueous/pressure (–1) | | | | (ii) | Elimination (reaction) |) | | | 1 | | | | Reject any qua
electrophilic cr | | of elim | ination e.g nucleophilic/ | | | (d) | (i) | $Cl_2 \rightarrow 2Cl^{\bullet}$ Ignore state symbols | | | | 1 | | | | Reject not 2 Cl
Reject $Cl_2 \rightarrow 20$ | | | | 1 | - (ii) $C_3H_8 + Cl_2 \rightarrow C_3H_7Cl + HCl$ Ignore state symbols $Reject\ 2Cl^\circ + C_3H_8 \rightarrow C_3H_7Cl + HCl$ - (iii) 2 (,) 3 (-)dimethyl butane (1) Ignore punctuation Reaction between two CH₃—CH—CH₃ (1) dot must be shown on central carbon atom Termination (1) Accept $C_3H_7^{\circ} + C_3H_7^{\circ} \rightarrow C_6H_{14}$ Accept chain termination Reject 2,3 methylbutane Reject CH₃CHCH₃° [13] 1 3 3 1 23. (a) (i) Amount of $CO_2 = \frac{53}{24000}$ = 0.0022 (mol) Accept 0.002 with working Amount of $$H_2O = \frac{0.020}{18}$$ = 0.0011 (mol) Amount of C = 0.0022 mol = 0.0265(g)Amount of H = 0.0022 mol = 0.0022(g) Any one of above needed for 1st mark (1) Mass of O in Z = 0.0714 (g) OR amount of O in Z = 0.0045 (mol) Some clear indication they have done it correctly (1) Empirical formula CHO₂ (1) (ii) $(CHO_2)_y = (12 + 1 + 2 \times 16)y = 90$ Y = 2 Molecular formula C₂H₂O₄ Allow TE from (i) Allow C₂H₂O₄ with no working Allow any indication they know how to do it eg 'n × empirical mass = molar mass' Reject $C_4H_{10}O$ only (no connection with (i)) | (iii) | | | | |-------|---|--|---| | | 1000
Accept formula alone for Z | | | | | CO ₂ H | | | | | CO ₂ H (1) | 2 | | | | Accept fully/partially displayed formula | | | | (iv) | X CH ₂ BrCH ₂ Br (1) Y CH ₂ OHCH ₂ OH (1) Look out for TE and internal TE Eg W CH ₃ CHCH ₂ X CH ₃ CHBrCH ₃ Y CH ₃ CHOHCH ₃ is worth 1 max | 3 | | | | alkenes eg CH ₃ CHOHCH ₂ OH etc | | | | (v) | Allow $C_{17}H_{36} + C_3H_6$ OR $C_{16}H_{34} + C_4H_8$ | 1 | | | | | | | | | Accept any valancea equation including ethane | | | | Sulp | huric acid/H ₂ SO ₄ consequential on potassium manganate (1) | 2 | | | | Accept TE for W alkene and corresponding monohydric alcohol 1. H_2SO_4 /sulphuric acid 2. H_2O /water | | | | | Reject other Roman numerals after managate | | [12] | | (i) | 2-bromobutane the "2" must be in front of "bromo" Ignore punctuation and capitals | 1 | | | | (iv) Pota: Sulp ALL | CO ₂ H (1) Accept fully/partially displayed formula (iv) W CH ₂ =CH ₂ (1) X CH ₂ BrCH ₂ Br (1) Y CH ₂ OHCH ₂ OH (1) Look out for TE and internal TE Eg W CH ₃ CHBrCH ₂ X CH ₃ CHBrCH ₃ Y CH ₃ CHOHCH ₃ is worth 1 max Accept full credit for consistent answers based on other gaseous alkenes eg CH ₃ CHOHCH ₂ OH etc (v) C ₂₀ H ₄₂ → C ₁₈ H ₃₈ + C ₂ H ₄ (1) Allow C ₁₇ H ₃₆ + C ₃ H ₆ OR C ₁₆ H ₃₄ + C ₄ H ₈ Accept TE for W Accept any balanced equation including ethane Potassium manganate((VII))/KMnO4 (1) Sulphuric acid/H ₂ SO ₄ consequential on potassium manganate (1) ALLOW 'acidified potassium manganate((VII))' for both marks Accept TE for W alkene and corresponding monohydric alcohol 1. H ₂ SO ₄ /sulphuric acid 2. H ₂ O/water Reject other Roman numerals after managate | Accept formula alone for Z CO ₂ H CO ₂ H (I) 2 Accept fully/partially displayed formula (iv) W CH ₂ =CH ₂ (I) X CH ₂ BrCH ₂ Br (I) Y CH ₂ OHCH ₂ OH (I) Look out for TE and internal TE Eg W CH ₃ CHOHCH ₃ Y CH ₃ CHOHCH ₃ is worth 1 max 3 Accept full credit for consistent answers based on other gaseous alkenes eg CH ₃ CHOHCH ₂ OH etc (v) C ₂₀ H ₄₂ → C ₁₈ H ₃₈ + C ₂ H ₄ (I) Allow C ₁₇ H ₃₆ + C ₃ H ₆ OR C ₁₆ H ₃₄ + C ₄ H ₈ 1 Accept TE for W Accept any balanced equation including ethane Potassium manganate((VII))/KMnO4 (I) Sulphuric acid/H ₂ SO ₄ consequential on potassium manganate (I) ALLOW 'acidified potassium manganate((VII))' for both marks 2 Accept TE for W alkene and corresponding monohydric alcohol 1. H ₂ SO ₄ /sulphuric acid 2. H ₂ O/water Reject other Roman numerals after managate (i) 2-bromobutane the "2" must be in front of "bromo" | 24. | | (ii) | CH ₃ CHBrCH ₂ CH ₃ + KOH \rightarrow CH ₃ CHOHCH ₂ CH ₃ + KBr
OR
CH ₃ CHBrCH ₂ CH ₃ + OH ⁻ \rightarrow CH ₃ CHOHCH ₂ CH ₃ + Br ⁻ | 1 | |-----|-------|---|---| | | | Accept C_2H_5 instead of CH_2CH_3 | | | | | $Allow K^{+}$ as spectator ion | | | | | Reject eqns with NaOH | | | | (iii) | water / H ₂ O / aqueous ethanol | 1 | | | | Accept C_2H_5OH (aq) / aqueous alcohol/KOH(aq)/aqueous Do not penalise use of NaOH(aq) again | | | | | Reject just "ethanol / ethanolic / alcoholic (KOH)" | | | | (iv) | nucleophilic substitution (both needed) | 1 | | | | Accept reasonable phonetic spelling | | | (b) | (i) | CH ₃ CHBrCH ₂ CH ₃ + OH ⁻ → CH ₃ CH=CHCH ₃ + H ₂ O + Br ⁻
OR
CH ₃ CHBrCH ₂ CH ₃ + OH ⁻ → CH ₂ =CHCH ₂ CH ₃ + H ₂ O + Br ⁻
Double bond need not be shown | 1 | | | | Accept C_2H_5 instead of CH_2CH_3 | | | | | Ignore spectator ions | | | | (ii) | Ethanol / C ₂ H ₅ OH / CH ₃ CH ₂ OH / H H I I H—C—C—OH I I H H | 1 | | | | Accept alcohol OR Ethanolic/alcoholic
Accept KOH/NaOH | | | | | Reject C_2H_6O | | | | | Reject any mention of water/aqueous | | | | (iii) | elimination ignore "nucleophilic" | 1 | | | | Reject electrophilic elimination | | (c) (i) 1 bond to H of CH₃ on left carbon structure with 90° bond angles (c) (ii) no / restricted rotation around double bond / C= C/π – bond (1) has two different groups joined to each C (of double bond) OR each (carbon of C=C) has a CH₃ 2 and a H (1) limited rotation on the carbon (d) nickel / Ni (i) OR platinum / Pt OR palladium / Pd 1 (d) butane / CH₃CH₂CH₂CH₃ 1 (ii) C₂H₅ for CH₃CH₂ JUST " C_4H_{10} " [12] 25. (a) (i) (Concentrated) sulphuric acid/H₂SO₄ (1) Water/ H_2O (1) Any order 2 Accept phosphoric acid 1 HBr 2 NaOH/KOH (2) $H_2SO_4 + NaOH/KOH (1max)$ H₂O and high T and P and catalyst (1 max) Reject dilute/aq sulphuric acid $H_2SO_4 + Na_2Cr_2O_7$ (0) H_2O alone (0) $H_2O + \times (eg\ H_2O_2)\ (0)$ Butan(e) -1,2-diol 1 (ii) Ignore punctuation 1,2-butan(e)diol 1,2-dihydroxybutane Reject buta-1,2-diol Reject but-1,2-diol Reject 1,2-diolbutan(e) Reject any formula 1 1,2-dibromobutane Ignore punctuation Reject any formula Hydrogen bromide/HBr (iv) 1 Ignore (aq) $Accept KBr + H_2SO_4/H_3PO_4$ Accept any other metal Accept bromides Two reactants come together to make one product 1 (b) Accept one reagent added across double bond Accept use judgement but in general look for 'two...become one' Accept 'two or more reactants give one product' Reject 'adding 1 atom' Reject just 'unsaturated becomes saturated' Reject just 'the double bond breaks' Reject '2 molecules are joined' A species/molecule/ion with a space for/which can accept (a pair of) (c) (i) electrons (to make a dative covalent bond) 1 Accept an electron deficient entity Accept electron deficient ion Reject just 'a lover of negative charge' Reject positive ion Reject electron deficient element (ii) $Br^{\delta+} - Br^{\delta-} / Br^{\delta+}$ 1 Accept Br⁺ Be generous on symbols for delta Reject Br₂ | (d) | (i) | Reaction 2 | 1 | | |-----|-------|---|---|------| | | | Reject two answers | | | | | (ii) | Oxidation number of carbon increases or oxygen is added (to the organic compound) | 1 | | | | | Reject loss of electrons alone / loss of electrons and addition of oxygen | 1 | | | (e) | (i) | Butane/CH ₃ CH ₂ CH ₂ CH ₃ | 1 | | | | | Accept displayed formulae Accept C_2H_5 instead of CH_3 CH_2 | | | | | | Reject C_4H_{10} | | | | | (ii) | Hydrogen (1) Nickel (1) | 2 | | | | | Accept H_2 Accept Ni Accept platinum/Pt or palladium/Pd | | | | | | Reject H | | | | | (iii) | Chlorine (1) UV/ultraviolet/sunlight (1) | 2 | | | | | Accept Cl_2 Accept visible light | | | | | | Reject just 'light' | | [15] | | 26. | (a) | (i) | Any two of | | |-----|-----|-------|---|---| | | | | • (same) general formula | | | | | | Accept (Same) general molecular formula | | | | | | Reject (Same) molecular formula | | | | | | • (successive) members differ by CH ₂ | | | | | | (same) functional group/ (similar/same) chemical
properties/reactions | | | | | | regular trend in physical properties | | | | | | Reject same physical properties | | | | | | Reject reference to a specific reaction e.g. same reaction with chlorine | | | | | | IGNORE "same properties" | 2 | | | | (ii) | alkene(s) | 1 | | | | | Reject C=C
Reject alk a ne | | | | | (iii) | electrophilic addition (1) both needed | | | | | | IGNORE heterolytic and penalise homolytic | | | | | | hydrogen chloride/HCl (1) | 2 | | | | | Reject (Dilute) hydrochloric acid/dilute HCl /HCl(aq) | | | | (b) | same | e molecular formula (1) | | | | | | Accept same numbers of each atom | | | | | | rent structural formulae/displayed formulae/ gement of atoms (1) | 2 | | | | | Accept different structure | | | | | | Reject different arrangement in space | | (c) 1-bromopropane faster (1) Stand alone Accept reverse statement Any answer which gives 1-chloropropane as faster scores zero overall because C-Br bond weaker (than C-Cl) (1) Accept reverse argument Reject if no reference to carbon-halogen bond IGNORE attempted explanations of why C-Br bond weaker therefore lower activation energy/E_{act} (1) [Lower E_{act} must be related to $C\!-\!X$ bond] Accept reverse argument (d) 2 carbon chain with continuation bonds in repeat unit (1) All other atoms correct (1) IGNORE subscript n IGNORE where the bond to the CH₃ goes e.g. CH₃ is fine 2 3 If more than one repeat unit given and number of repeat units stated or the repeat unit identified (2) If repeat unit not stated or identified can score 2nd mark only Reject 3 carbon chain Or Any repeat unit containing a double bond scores zero (e) Restricted rotation around double bond (1) Accept no rotation/double bond cannot rotate (at room temperature) 1-chloropropene has two different groups on **both** carbons/**each** carbon (in the double bond)(but propene does not) (1) 2 Accept propene has two identical groups on **one** carbon (of the double bond) (but 1-chloropropene does not) [14] - 27. (a) \mathbf{C} 1 1 (b) D (c) 1 A 1 (d) D [4] 1 28. (a) A (b) \mathbf{C} 1 [2] 29. В [1] - **30.** C [1] Reject inaccurate placing of curly arrows - (ii) The secondary carbocation/carbonium ion is more stable than the primary (so forms when H⁺ adds) OR The secondary carbocation/carbonium ion is stable because the methyl groups are electron donating - (iii) 2-bromopropane 1 - (b) Acidified potassium manganate(VII) / potassium permanganate / KMnO4((aq)) 1 [11] (c) $$n(CH_2=CHCH_3) \longrightarrow \begin{pmatrix} H & H \\ | & | \\ C & -C \\ | & | \\ HH-C-H \\ H$$ balanced and double bond broken (1) $$CH_3 \text{ on side chain (1)}$$ Reject CH3 in unbranched chain - (d) Poly(propene) is non-biodegradable / won't break down in wet conditions (1) - (e) (i) propagation 1 - $\begin{array}{ccc} \hbox{(ii)} & C_6H_{14}\,/\,\, hexane\,/ \\ & \hbox{Structural, displayed or skeletal formulae of hexane} & 1 \end{array}$